19 research outputs found

    Development of Real-Time Interworking between IEEE1888 and ECHONET Lite Standards for Building Energy Management System

    Get PDF
    This paper proposes the development of interworking proxy gateway for real-time data updates between IEEE1888 and ECHONET Lite standards in a building energy management system. Both IEEE1888 and ECHONET Lite are developed as open standards and hence a support for application and equipment development. IEEE1888 standard uses XML message format and is suitable for a wide range of machine-to-machine communications. ECHONET Lite standard is a highly accepted standard in Japan and with emerging supports by equipment manufacturers such as for air conditioners. This development of interworking proxy gateway in this research thus enhances the ability and flexibility in building energy management system to be compliant with different communication standards, which could be useful for both user and manufacturer sectors in the future

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks

    Towards 5G Cellular: Understanding 3D In-Building Single Band and Multi-band Small Cells with Control/User-plane Coupled and Separation Architectures with a Novel Resource Reuse Approach

    Get PDF
    In this paper, we present numerous small cell base station, i.e. femtocell base station (FCBS), with control-/user-plane coupled and separation architectures based on the number of transceivers and operating frequency bands to serve control-/user-plane traffic. A single transceiver enabled FCBS can operate at either a co-channel microwave of the overlaid macrocell or a millimeter wave band. For multiple transceivers, dual transceivers are considered operating at both bands. FCBSs are deployed in a number of buildings with each floor modeled as 5×5 square-grid apartments. The co-channel interference with FCBSs is avoided using enhanced intercell interference coordination techniques. We propose a static frequency reuse approach and develop an algorithm by avoiding adjacent channel interferences from reusing frequencies in FCBSs. We also develop a resource scheduling algorithm for FCBSs with CUCA and CUSA to evaluate system level performances with a multi-tier network. It is found that a single transceiver co-channel microwave enabled FCBS with CUCA provides the worse, whereas a single or dual transceivers millimeter wave enabled FCBS with CUSA provides the best overall system capacity and FCBSs’ energy efficiency performances. Besides, we show the outperformances of the proposed resource reuse approach over an existing approach in literature in terms of system capacity and fairness among FCBSs with CUCA. Finally, we point out the applicability of a multi-band enabled FCBS and several features and issues of FCBSs with CUCA and CUSA.In this paper, we present numerous small cell base station, i.e. femtocell base station (FCBS), with control-/user-plane coupled and separation architectures based on the number of transceivers and operating frequency bands to serve control-/user-plane traffic. A single transceiver enabled FCBS can operate at either a co-channel microwave of the overlaid macrocell or a millimeter wave band. For multiple transceivers, dual transceivers are considered operating at both bands. FCBSs are deployed in a number of buildings with each floor modeled as 5 by 5 square-grid apartments. The co-channel interference with FCBSs is avoided using enhanced intercell interference coordination techniques. We propose a static frequency reuse approach and develop an algorithm by avoiding adjacent channel interferences from reusing frequencies in FCBSs. We also develop a resource scheduling algorithm for FCBSs with CUCA and CUSA to evaluate system level performances with a multi-tier network. It is found that a single transceiver co-channel microwave enabled FCBS with CUCA provides the worse, whereas a single or dual transceivers millimeter wave enabled FCBS with CUSA provides the best overall system capacity and FCBSs' energy efficiency performances. Besides, we show the outperformances of the proposed resource reuse approach over an existing approach in literature in terms of system capacity and fairness among FCBSs with CUCA. Finally, we point out the applicability of a multi-band enabled FCBS and several features and issues of FCBSs with CUCA and CUSA

    A Novel Approach for Centralized 3D Radio Resource Allocation and Scheduling in Dense HetNets for 5G Control-/User-plane Separation Architectures

    Get PDF
    This paper presents a centralized 3-dimensional radio resources (namely, time, frequency, and power) allocation and scheduling approach for control-plane and user-plane (C-/U-plane) separation architectures for fifth generation mobile networks. A central station is considered where schedulers of all base stations (BSs) are located. We consider a multi-tier network that comprises of a macrocell BS (MCBS), several outdoor picocell BSs, and a number of indoor femtocell BSs (FCBSs) deployed in a number of multi-storage buildings. The system bandwidth is reused in FCBSs within each building orthogonally. In contrast to the conventional almost blank subframe, we consider a fully blank subframe based time-domain enhanced intercell interference coordination to split completely C-/U-plane traffic such that the control-plane can be served only by the MCBS and the user-plane of user equipments by their respective BSs. We propose two power management schemes for FCBSs based on whether or not the coordinated multi-point communication with joint transmission (JT CoMP) is employed during off-state of a FCBS and develop a power control mechanism for both a single user and multi-user per FCBS scenarios. An optimal value of average activation factor (OAF) for a FCBS is derived to trade-off its serving capacity and transmit power saving factor. It is shown that in order to improve the network capacity, a FCBS needs to operate at an average activation factor (AAF) greater than its OAF using JT CoMP to serve neighboring on-state FCBSs during its normal off-state, whereas at an AAF less than the OAF to improve the energy efficiency. With a system level simulation, we show that the capacity of a FCBS increases, whereas its power saving factor decreases linearly with an increase in its AAF because of serving increased traffic, and an OAF of 0.5 for the capacity scaling factor and greater than 0.5 for are found.This paper presents a centralized 3-dimensional radio resources (namely, time, frequency, and power) allocation and scheduling approach for control-plane and user-plane (C-/U-plane) separation architectures for fifth generation mobile networks. A central station is considered where schedulers of all base stations (BSs) are located. We consider a multi-tier network that comprises of a macrocell BS (MCBS), several outdoor picocell BSs, and a number of indoor femtocell BSs (FCBSs) deployed in a number of multi-storage buildings. The system bandwidth is reused in FCBSs within each building orthogonally. In contrast to the conventional almost blank subframe, we consider a fully blank subframe based time-domain enhanced intercell interference coordination to split completely C-/U-plane traffic such that the control-plane can be served only by the MCBS and the user-plane of user equipments by their respective BSs. We propose two power management schemes for FCBSs based on whether or not the coordinated multi-point communication with joint transmission (JT CoMP) is employed during off-state of a FCBS and develop a power control mechanism for both a single user and multi-user per FCBS scenarios. An optimal value of average activation factor (OAF) for a FCBS is derived to trade-off its serving capacity and transmit power saving factor. It is shown that in order to improve the network capacity, a FCBS needs to operate at an average activation factor (AAF) greater than its OAF using JT CoMP to serve neighboring on-state FCBSs during its normal off-state, whereas at an AAF less than the OAF to improve the energy efficiency. With a system level simulation, we show that the capacity of a FCBS increases, whereas its power saving factor decreases linearly with an increase in its AAF because of serving increased traffic, and an OAF of 0.5 for the capacity scaling factor k = 1/2 and greater than 0.5 for k < 1 are found.&nbsp

    Traffic Data Analysis on Sathorn Road with Synchro Optimization and Traffic Simulation

    Get PDF
    Traffic problems have become a plague of the society that cannot be abolished. This work considers the city of Bangkok and its urban road traffic problem, with a particular focus on traffic light control. Managing traffic control by generating optimal traffic signal timing is one of the solutions to reduce the delay at intersections. Synchro is used as a platform to achieve two things in this work. First, to initialize optimal cycle lengths of the intersections on Sathorn road. Second, to assist in the implementation of reversible lane that involves two traffic signal lights in short distance. All of the data are obtained by the technical team of Sathorn Model project, most of which are based on the field work. A comparative analysis is conducted between optimal cycle lengths and the actual signal timing as operated by traffic police from real data collection to see the improvement of travel times in various cases

    Traffic Signal Control with Cell Transmission Model Using Reinforcement Learning for Total Delay Minimisation

    Get PDF
    This paper proposes a new framework to control the traffic signal lights by applying the automated goal-directed learning and decision making scheme, namely the reinforcement learning (RL) method, to seek the best possible traffic signal ac- tions upon changes of network state modelled by the signalised cell transmission model (CTM). This paper employs the Q-learning which is one of the RL tools in order to find the traffic signal solution because of its adaptability in finding the real time solu- tion upon the change of states. The goal is for RL to minimise the total network delay. Surprisingly, by using the total network delay as a reward function, the results were not necessarily as good as initially expected. Rather, both simulation and mathemat- ical derivation results confirm that using the newly proposed red light delay as the RL reward function gives better performance than using the total network delay as the reward function. The investigated scenarios include the situations where the summa- tion of overall traffic demands exceeds the maximum flow capacity. Reported results show that our proposed framework using RL and CTM in the macroscopic level can computationally efficiently find the proper control solution close to the brute-forcely searched best periodic signal solution (BPSS). For the practical case study conducted by AIMSUN microscopic traffic simulator, the proposed CTM-based RL reveals that the reduction of the average delay can be significantly decreased by 40% with bus lane and 38% without bus lane in comparison with the case of currently used traffic signal strategy. Therefore, the CTM-based RL algorithm could be a useful tool to adjust the proper traffic signal light in practice

    Deploying and Evaluating OF@TEIN Access Center and Its Feasibility for Access Federation

    Get PDF
    For the emerging software-defined infrastructure, to be orchestrated from so-called logically centralized DevOps Tower, the shared accessibility of distributed playground resources and the timely interaction among operators and developers are highly required. In this paper, by taking OF@TEIN SDN-Cloud playground as a target environment, we discuss an access center effort to address the above requirements. In providing the developer presence via the proposed access center, the inherent heterogeneity of internationally dispersed OF@TEIN resources is setting a unique challenge to cope with the broad spectrum of link bandwidths and round-trip delays. The access capability of deployed access center is experimentally verified against a wide range of access network conditions, which would be extended for futuristic access federation with appropriate identity management and resources abstraction for multiple developers and operators
    corecore